Где расположены глубоководные впадины? глубоководные океанические желоба

Литература

  • Schellart, WP; Lister, G. S. Orogenic Curvature: Paleomagnetic and Structural Analyses (неопр.) // Geological Society of America. — 2004. — С. 237—254.
  • A.B. Watts, 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press. 458p.
  • Wright, D. J.; Bloomer, S. H.; MacLeod, C. J.; Taylor, B.; Goodlife, A. M. Bathymetry of the Tonga Trench and Forearc: a map series (англ.) // Marine Geophysical Researches : journal. — 2000. — Vol. 21, no. 489—511. — P. 2000.
  • «Deep-sea trench». McGraw-Hill Encyclopedia of Science & Technology, 8th edition, 1997.
  • J.W. Ladd, T. L. Holcombe, G. K. Westbrook, N. T. Edgar, 1990. «Caribbean Marine Geology: Active margins of the plate boundary», in Dengo, G., and Case, J. (eds.) The Geology of North America, Vol. H, The Caribbean Region, Geological Society of America, p. 261–290.
  • W. B. Hamilton 1988. «Plate tectonics and island arcs». Geological Society of America Bulletin: Vol. 100, No. 10, pp. 1503–1527.
  • R. L. Fisher and H. H. Hess, 1963. «Trenches» in M. N. Hill (ed.) The Sea v. 3 The Earth Beneath the Sea. New York: Wiley-Interscience, p. 411–436.

Открытие Марианского желоба

Глубочайшая точка Тихого океана была обнаружена почти 150 лет назад (1875 год). Это было сделано во время первой океанографической экспедиции. По результатам проделанных работ была создана отдельная дисциплина — океанография. Научная экспедиция длилась 4 года — с 1872 по 1876. Она была осуществлена на парусно-паровом корвете «Челленджер». Корабль принадлежал королевскому британскому флоту. Экспедиция проводилась по инициативе шотландского ученого Чарльза Томсона. «Челленджер» был оснащен оборудованием для проведения исследовательских работ, химлабораторией, аппаратурой для измерения глубины дна. Во время вояжа было взято множество проб грунта, океанической воды, которые затем использовались для изучения флоры и фауны Тихого океана. Разлом неподалеку от Марианского архипелага обнаружили с помощью глубоководного эхолота. Было сделано несколько замеров с разными значениями. Цифры колебались от 8 184 м до 8 367 м. Всего за время экспедиции Челленджер провел более 400 замеров глубины океанского дна.

Марианская впадина

Марианская впадина, или как ее называют ученые Марианский желоб, знаком, пожалуй, каждому школьнику. Свое название он получил из-за того, что поблизости с ним находятся Марианские острова. Именно по этой причине глубоководная трещина Мирового океана получила название не в честь корабля Челленджер, который, к слову, и открыл ее, установив в 1857 году ее глубину почти в 8 200 метров. Естественно, это было примерное измерение впадины, и ее глубина была в то время измерена не точно. Как бы там ни было, Марианский желоб, точнее его место, под названием «Бездна Челленджера», является самым глубоким местом на Земле. «Бездна Челленджера» названа не в честь первого корабля, а в честь судна Челленджер II, команда которого при помощи эхолота в 1951 установила глубину впадины в 10 899 метров.

Исследования Марианской впадины велись с завидной регулярностью. Каждому ученому хотелось установить точную глубину «Бездны Челленджера». На сегодняшний день пока только три человека решились в специальных глубоководных аппаратах, выдерживающих чудовищное давление, спуститься в самую глубокую трещину Мирового океана. Первое погружение удачно прошло еще в 1960 году. Исследователь Жак Пикар вместе с отважным лейтенантом ВМС Соединенных Штатов Америки спустился в бездну. Удивительно, но именно в первое погружение все приборы зафиксировали глубину в 11 512 метров. Пикар был поражен тем, что практически у самого дна он увидел медленно проплывающих рыб, которые непонятным образом выдерживали давление столба воды более чем в 11 километров. Совсем недавно в конце марта 2012 года легендарный кинорежиссер Джеймс Кэмерон опустился на дно Марианской впадины. Он отснял материал на 3D камеру и даже сумел взять пробы воды и отловить живые организмы, обитающие в кромешной тьме. Уже скоро на канале National Geographic появится документальный фильм, который был отснят Кэмероном с использованием ультрасовременной съемочной техники. Справедливости ради стоит отметить, несмотря на исследования ученых, многочисленные зондирования, до настоящего момента точная глубина Марианской впадины, имеющей V – образную форму и протянувшуюся почти на 1 500 километров, увы, не определена.

Появление озер и первичного океана

Наша планета в результате этих процессов окуталась туманом. Она скрылась за облаками, которые несли с собой, помимо вулканических газов, большие массы водяных паров. Следует сказать, что в те времена на Земле было нежарко. Ученые провели исследования, в результате которых выяснилось, что температура на планете около первого миллиарда лет ее жизни не превышала 15 °C.

На поверхность Земли каплями конденсата падал остывающий водяной пар. В результате этого она сначала покрылась лишь отдельными озерцами и лужами. Изначально поверхность Земли, как вы теперь знаете, не была гладкой и ровной. Однако эти неровности увеличились в результате вулканической деятельности. Вода заполняла впадины разной глубины. Все крупнее становились отдельные озера, до тех пор, пока они не слились воедино. Так был сформирован первичный океан. Объяснение, представленное выше, было дано Отто Юльевичем Шмидтом, советским ученым. Конечно, это спорная гипотеза, как и любые другие, подобные ей. Однако никто до сих пор не выдвинул более правдоподобной версии.

Изучение океанических желобов

Большинство желобов не были известны до конца 20-го века. Для их изучения требуются специализированные подводные аппараты, которые не существовали до второй половины 1900-х годов.

Батискаф «Триест»

Эти глубокие океанические желоба мало пригодны для жизни большинства живых организмов. Давление воды на этих глубинах мгновенно убьет человека, поэтому никто не осмеливался исследовать дно Марианской впадины на протяжении многих лет. Однако в 1960 году двое исследователей осуществили погружение в Бездну Челленджера с помощью батискафа под названием «Триест». И только в 2012 году (52 года спустя) другой человек отважился покорить самую глубокую точку Мирового океана. Это был кинорежиссер (известный по фильмам «Титаник», «Аватар» и др.) и подводный исследователь Джеймс Кэмерон, который осуществил одиночное погружение с помощью батискафа «Deepsea Challenger» и достиг дна в котловине Челленджера Марианской впадины. Большинство других глубоководных исследовательских аппаратов, таких как Алвин (используется Океанографическим институтом Вудс-Хоул в Массачусетсе), не погружаются на большую глубину до сих пор, но все же могут опускаться примерно на 3600 метров.

Как изучаются глубины океана

Изучение дна имеет важное значение для геологии. Процессы, связанные с движением литосферных плит, необходимо регистрировать постоянно, так как они позволяют спрогнозировать сейсмические угрозы

В районах глубоководных желобов отмечается самая высокая сейсмоопасность. Как следствие, возникновение мощных землетрясений, вызывающих большие волны (цунами).

При глубине более 100 м из-за отсутствия солнечного света исследования без специальных приборов невозможны. Места, куда солнечный свет не может достигнуть, называют абиссалями. При работе в абиссалях даже с помощью прожектора невозможно обеспечить достаточно света, чтобы сделать четкие снимки. Искусственный свет дает возможность добиться только ближнего обзора. Именно поэтому использование света в принципе не является удачной затеей. Совсем иначе дело обстоит с использованием звука. Ультразвук является максимально эффективным средством изучения рельефа дна. С помощью эхолотов ученые на протяжении многих лет успешно изучают морское дно. Принцип работы эхолота построен на отражении звука от различных поверхностей. Устройство считывает данные, принимая обратный сигнал, что позволяет создать картину. Раньше люди пользовались сложными измерительными приборами, которые давали минимальную эффективность измерения. Например, при измерении глубин от Северного полюса до Гренландского моря советским исследователям пришлось пользоваться тяжелым лотом. Опуская его с помощью лебедки, они проводили замеры глубины, что было чрезвычайно трудоемкой задачей. Так как измерения проводились с дрейфующей льдины, постоянно приходилось вводить поправки. Кроме того, сам лот оказался подвижен, поэтому о точных замерах не могло быть и речи. Теперь ученым не нужно тратить много времени — эхолот за секунды сделает все необходимые вычисления и устанавливается на судне.

Несмотря на важность эхолотов, они не заменили батискафы и другие подводные аппараты. На малых глубинах их все еще целесообразно использовать

Что касается фото- и видеосъемок, то здесь необходимо использование специальных модулей, в которые устанавливаются камеры. Впервые подобным увлечением прославился советский ученый Зенкевич, который фотографировал рыб, обитающих на сравнительно больших глубинах.

Изучение Тихого и Мирового океанов считается одной из наиважнейших задач мира науки. Впереди человечество ждет еще немало открытий, которые смогут обезопасить жизнь людей и позволят пролить свет на многие тайны земной жизни.

Изучение

В процессе развития цивилизации возникла необходимость в изучении морей и океанов. Первоначально это было связано с определением возможности судоходства, на этом этапе исследования носили океанографический характер, то есть составлялись описания: побережья, заливов, проливов, островов.

Первые сухопутные карты в виде наскальных рисунков датируются 25 тысячелетием до н. э., небесные — 16–17 тысячелетием до н.э., морские — всего лишь 5–6 веком до н. э. Самые древние из найденных греческих периплов (документы с описанием прибрежной зоны, составленные во время морского путешествия) были созданы в 515 году до н. э. Затем следовали океанологические исследования — изучение водной массы, животного и растительного мира, морского дна, рельефа, составление карты течений.

По мере развития технологий менялись способы изучения. Глубины изначально определяли обычным лотом — грузом привязанным к канату. Этот способ был достаточным для определения пресловутых семи футов под килем, однако слабо подходил для определения больших глубин.

Следующим этапом развития стало появление эхолота, более совершенного, но неидеального инструмента. Принцип его работы основан на измерении радиоволн, отраженных от поверхности дна. Особенность прибора заключается в том, что характеристики воды на разных глубинах отличаются, а значит, расчет должен их учитывать, что не всегда возможно осуществить корректно. В настоящее время инструментарий существенно расширен за счет использования более совершенных и мощных технологий, в том числе космических.

Изначально после изучения внутренних водоемов проводились исследования локальных морских участков местожительства тех или иных народов. Арабы проявляли активность в освоении африканского побережья Индийского океана, греки и римляне обследовали Средиземное и Черное моря, дошли до Балтийского, китайцы и полинезийцы занимались Тихим океаном в пределах побережий своих территорий и так далее. Эпоха более глобальных и амбициозных проектов стартовала в 15 веке н. э. Имена Бартоломео Диаш, Васко да Гамма, Христофора Колумба, Фернана Магеллана связаны с историей величайших открытий: Мыса Доброй Надежды, Северной и Южной Америки. Было совершено первое морское кругосветное путешествие.

В 18–19 веках мир узнал немало великих имен мореплавателей, среди которых были русские, французы, голландцы и англичане. Первой крупной океанологической экспедицией считают кругосветное путешествие английского корвета Челленджер, того самого, по имени которого названа глубочайшая точка Марианской впадины.

Плавание продолжалось четыре года, а результат трудов исследователей затем обрабатывали более семидесяти ученых в течение двадцати лет. По итогам было издано пятьдесят томов научной литературы, 2300 новых карт, чертежей, рисунков. Также было открыто множество новых видов и родов морских организмов.

Литосфера

Мантию надежно скрывает твердая прочная оболочка земной коры, толщина которой составляет до 70 км. Земная кора, а также верхняя часть мантии вместе образуют литосферу. Это название также имеет греческое происхождение и состоит из двух слов. Первое из них – «камень», а второе – «сфера». Расплавленная магма, которая поднимается вверх из глубин, растягивает (вплоть до разрыва) земную кору. Чаще всего такие разрывы происходят именно в океанских глубинах. Иногда движения магмы даже приводят к изменению скорости вращения Земли, а значит и ее фигуры.

Литосфера – это не однородный сплошной покров. Она состоит из 13 больших плит – блоков, толщина которых составляет от 60 до 100 км. У всех этих литосферных плит есть как океаническая, так и материковая кора. Наиболее крупными из них являются Американская, Индо-Австралийская, Антарктическая, Евразийская и Тихоокеанская.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector